IBM Keynote: (hardware,software)–>{IBM.java.patterns}

Posted by Janice J. Heiss on Oracle Blogs See other posts from Oracle Blogs or by Janice J. Heiss
Published on Mon, 1 Oct 2012 05:47:19 +0000 Indexed on 2012/10/01 9:44 UTC
Read the original article Hit count: 444

Filed under:

On Sunday evening, September 30, 2012, Jason McGee, IBM Distinguished Engineer and Chief Architect Cloud Computing, along with John Duimovich IBM Distinguished Engineer and Java CTO, gave an information- and idea-rich keynote that left Java developers with much to ponder.

Their focus was on the challenges to make Java more efficient and productive given the hardware and software environments of 2012. “One idea that is very interesting is the idea of multi-tenancy,” said McGee, “and how we can move up the spectrum. In traditional systems, we ran applications on dedicated middleware, operating systems and hardware. A lot of customers still run that way. Now people introduce hardware virtualization and share the hardware. That is good but there is a lot more we can do. We can share middleware and the application itself.”

McGee challenged developers to better enable the Java language to function in these higher density models. He spoke about the need to describe patterns that help us grasp the full environment that an application needs, whether it’s a web or full enterprise application. Developers need to understand the resources that an application interacts with in a way that is simple and straightforward. The task is to then automate that deployment so that the complexity of infrastructure can be by-passed and developers can live in a simpler world where the cloud can automatically configure the needed environment.

McGee argued that the key, something IBM has been working on, is to use a simpler pattern that allows a cloud-based architecture to embrace the entire infrastructure required for an application and make it highly available, scalable and able to recover from failure. The cloud-based architecture would automate the complexity of setting up and managing the infrastructure.

IBM has been trying to realize this vision for customers so they can describe their Java application environment simply and allow the cloud to automate the deployment and management of applications.

“The point,” explained McGee, “is to package the executable used to describe applications, to drop it into a shared system and let that system provide some intelligence about how to deploy and manage those applications.”

John Duimovich on Improvements in Java

McGee then brought onstage IBM’s Distinguished Engineer and CTO for Java, John Duimovich, who showed the audience ways to deploy Java applications more efficiently.

Duimovich explained that, “When you run lots of copies of Java in the cloud or any hypervisor virtualized system, there are a lot of duplications of code and jar files. IBM has a facility called ‘shared classes’ where we put shared code, read only artefacts in a cache that is sharable across hypervisors.” By putting JIT code in ahead of time, he explained that the application server will use 20% less memory and operate 30% faster.  

He described another example of how the JVM allows for the maximum amount of sharing that manages the tenants and file sockets and memory use through throttling and control. Duimovich touched on the “thin is in” model and IBM’s Liberty Profile and lightweight runtime for the cloud, which allows for greater efficiency in interacting with the cloud.

Duimovich discussed the confusion Java developers experience when, for example, the hypervisor tells them that that they have 8 and then 4 and then 16 cores. “Because hypervisors are virtualized, they can change based on resource needs across the hypervisor layer. You may have 10 instances of an operation system and you may need to reallocate memory, " explained Duimovich. 

He showed how to resize LPARs, reallocate CPUs and migrate applications as needed. He explained how application servers can resize thread pools and better use resources based on information from the hypervisors.

Java Challenges in Hardware and Software

McGee ended the keynote with a summary of upcoming hardware and software challenges for the Java platform.

He noted that one reason developers love Java is it allows them to ignore differences in hardware. He stated that the most important things happening in hardware were in network and storage – in developments such as the speed of SSD, the exploitation of high-speed, low-latency networking, and recent developments such as storage-class memory, and non-volatile main memory. “So we are challenged to maintain the benefits of Java and the abstraction it provides from hardware while still exploiting the new innovations in hardware,” said McGee.

McGee discussed transactional messaging applications where developers send messages transactionally persist a message to storage, something traditionally done by backing messages on spinning disks, something mostly outdated. “Now,” he pointed out, “we would use SSD and store it in Flash and get 70,000 messages a second. If we stored it using a PCI express-based flash memory device, it is still Flash but put on a PCI express bus on a card closer to the CPU. This way I get 300,000 messages a second and 25% improvement in latency.”

McGee’s central point was that hardware has a huge impact on the performance and scalability of applications. New technologies are enabling developers to build classes of Java applications previously unheard of. “We need to be able to balance these things in Java – we need to maintain the abstraction but also be able to exploit the evolution of hardware technology,” said McGee.

According to McGee, IBM's current focus is on systems wherein hardware and software are shipped together in what are called Expert Integrated Systems – systems that are pre-optimized, and pre-integrated together.

McGee closed IBM’s engaging and thought-provoking keynote by pointing out that the use of Java in complex applications is increasingly being augmented by a host of other languages with strong communities around them – JavaScript, JRuby, Scala, Python and so forth. Java developers now must understand the strengths and weaknesses of such newcomers as applications increasingly involve a complex interconnection of languages.

© Oracle Blogs or respective owner

Related posts about /JavaOne 2012